A reimplementation of Mario Kart Wii's physics engine in C++
Loading...
Searching...
No Matches
Vector.hh
1#pragma once
2
3#include "egg/math/Math.hh"
4
5#include "egg/util/Stream.hh"
6
7#include <format>
8
9namespace EGG {
10
12struct Vector2f {
13#ifdef BUILD_DEBUG
14 constexpr Vector2f()
15 : x(std::numeric_limits<f32>::signaling_NaN()),
16 y(std::numeric_limits<f32>::signaling_NaN()) {}
17#else
18 constexpr Vector2f() = default;
19#endif
20 constexpr Vector2f(f32 x_, f32 y_) : x(x_), y(y_) {}
21 ~Vector2f() = default;
22
23 inline void set(f32 val) {
24 x = y = val;
25 }
26
27 [[nodiscard]] Vector2f operator-() const {
28 return Vector2f(-x, -y);
29 }
30
31 [[nodiscard]] Vector2f operator-(const Vector2f &rhs) const {
32 return Vector2f(x - rhs.x, y - rhs.y);
33 }
34
35 [[nodiscard]] Vector2f operator+(const Vector2f &rhs) const {
36 return Vector2f(x + rhs.x, y + rhs.y);
37 }
38
39 Vector2f &operator+=(const Vector2f &rhs) {
40 return *this = *this + rhs;
41 }
42
43 [[nodiscard]] Vector2f operator*(const f32 scalar) const {
44 return Vector2f(x * scalar, y * scalar);
45 }
46
47 Vector2f &operator*=(const f32 scalar) {
48 return *this = *this * scalar;
49 }
50
51 friend Vector2f operator*(f32 scalar, const Vector2f &rhs) {
52 return Vector2f(scalar * rhs.x, scalar * rhs.y);
53 }
54
55 [[nodiscard]] f32 cross(const Vector2f &rhs) const {
56 return x * rhs.y - y * rhs.x;
57 }
58
59 [[nodiscard]] f32 dot(const Vector2f &rhs) const {
60 return x * rhs.x + y * rhs.y;
61 }
62
63 [[nodiscard]] f32 dot() const {
64 return x * x + y * y;
65 }
66
67 [[nodiscard]] f32 length() const {
68 return dot() > std::numeric_limits<f32>::epsilon() ? Mathf::sqrt(dot()) : 0.0f;
69 }
70
71 f32 normalise();
72
73 void read(Stream &stream);
74
75 f32 x;
76 f32 y;
77
78 static const Vector2f zero;
79 static const Vector2f ex, ey;
80};
81
83struct Vector3f {
84#ifdef BUILD_DEBUG
85 constexpr Vector3f()
86 : x(std::numeric_limits<f32>::signaling_NaN()),
87 y(std::numeric_limits<f32>::signaling_NaN()),
88 z(std::numeric_limits<f32>::signaling_NaN()) {}
89#else
90 constexpr Vector3f() = default;
91#endif
92 constexpr Vector3f(f32 x_, f32 y_, f32 z_) : x(x_), y(y_), z(z_) {}
93
94 // NOTE: Defining the destructor in the header ensures the struct is trivially destructible
95 ~Vector3f() = default;
96
97 inline void setZero() {
98 set(0.0f);
99 }
100
101 inline void set(f32 val) {
102 x = y = z = val;
103 }
104
105 [[nodiscard]] Vector3f operator-() const {
106 return Vector3f(-x, -y, -z);
107 }
108
109 [[nodiscard]] Vector3f operator-(const Vector3f &rhs) const {
110 return Vector3f(x - rhs.x, y - rhs.y, z - rhs.z);
111 }
112
113 Vector3f &operator-=(const Vector3f &rhs) {
114 return *this = *this - rhs;
115 }
116
117 [[nodiscard]] Vector3f operator+(const Vector3f &rhs) const {
118 return Vector3f(x + rhs.x, y + rhs.y, z + rhs.z);
119 }
120
121 Vector3f &operator+=(const Vector3f &rhs) {
122 return *this = *this + rhs;
123 }
124
125 [[nodiscard]] Vector3f operator+(f32 val) const {
126 return Vector3f(x + val, y + val, z + val);
127 }
128
129 Vector3f &operator+=(f32 val) {
130 return *this = *this + val;
131 }
132
133 [[nodiscard]] Vector3f operator*(const Vector3f &rhs) const {
134 return Vector3f(x * rhs.x, y * rhs.y, z * rhs.z);
135 }
136
137 [[nodiscard]] Vector3f operator*(f32 scalar) const {
138 return Vector3f(x * scalar, y * scalar, z * scalar);
139 }
140
141 [[nodiscard]] friend Vector3f operator*(f32 scalar, const Vector3f &rhs) {
142 return rhs * scalar;
143 }
144
145 Vector3f &operator*=(f32 scalar) {
146 return *this = *this * scalar;
147 }
148
149 [[nodiscard]] Vector3f operator/(f32 scalar) const {
150 return Vector3f(x / scalar, y / scalar, z / scalar);
151 }
152
153 Vector3f &operator/=(f32 scalar) {
154 return *this = *this / scalar;
155 }
156
157 bool operator==(const Vector3f &rhs) const {
158 return x == rhs.x && y == rhs.y && z == rhs.z;
159 }
160
161 bool operator!=(const Vector3f &rhs) const {
162 return !(*this == rhs);
163 }
164
166 explicit operator std::string() const {
167 return std::format("[0x{:08X}, 0x{:08X}, 0x{:08X}] | [{}, {}, {}]", f2u(x), f2u(y), f2u(z),
168 x, y, z);
169 }
170
172 [[nodiscard]] Vector3f cross(const Vector3f &rhs) const {
173 return Vector3f(y * rhs.z - z * rhs.y, z * rhs.x - x * rhs.z, x * rhs.y - y * rhs.x);
174 }
175
177 [[nodiscard]] f32 squaredLength() const {
178 return x * x + y * y + z * z;
179 }
180
182 [[nodiscard]] f32 dot(const Vector3f &rhs) const {
183 return x * rhs.x + y * rhs.y + z * rhs.z;
184 }
185
187 [[nodiscard]] f32 length() const {
188 return Mathf::sqrt(squaredLength());
189 }
190
193 [[nodiscard]] Vector3f proj(const Vector3f &rhs) const {
194 return rhs * rhs.dot(*this);
195 }
196
199 [[nodiscard]] Vector3f rej(const Vector3f &rhs) const {
200 return *this - proj(rhs);
201 }
202
204 [[nodiscard]] std::pair<Vector3f, Vector3f> projAndRej(const Vector3f &rhs) const {
205 return std::pair(proj(rhs), rej(rhs));
206 }
207
209 [[nodiscard]] Vector3f abs() const {
210 return Vector3f(Mathf::abs(x), Mathf::abs(y), Mathf::abs(z));
211 }
212
214 [[nodiscard]] f32 sqDistance(const Vector3f &rhs) const {
215 const EGG::Vector3f diff = *this - rhs;
216 return diff.squaredLength();
217 }
218
221 [[nodiscard]] EGG::Vector3f multInv(f32 val) const {
222 return *this * (1.0f / val);
223 }
224
225 [[nodiscard]] f32 ps_dot() const;
226 [[nodiscard]] f32 ps_dot(const EGG::Vector3f &rhs) const;
227 [[nodiscard]] f32 ps_squareMag() const;
228 f32 normalise();
229 void normalise2();
230 [[nodiscard]] Vector3f maximize(const Vector3f &rhs) const;
231 [[nodiscard]] Vector3f minimize(const Vector3f &rhs) const;
232 [[nodiscard]] f32 ps_sqDistance(const Vector3f &rhs) const;
233 [[nodiscard]] Vector3f perpInPlane(const EGG::Vector3f &rhs, bool normalise) const;
234
235 void read(Stream &stream);
236
237 f32 x;
238 f32 y;
239 f32 z;
240
241 static const Vector3f zero;
242 static const Vector3f ex, ey, ez;
243 static const Vector3f inf;
244};
245
246} // namespace EGG
A stream of data, abstracted to allow for continuous seeking.
Definition Stream.hh:10
EGG core library.
Definition Archive.cc:6
A 2D float vector.
Definition Vector.hh:12
void read(Stream &stream)
Initializes a Vector2f by reading 8 bytes from the stream.
Definition Vector.cc:16
A 3D float vector.
Definition Vector.hh:83
f32 normalise()
Normalizes the vector and returns the original length.
Definition Vector.cc:44
Vector3f abs() const
Returns the absolute value of each element of the vector.
Definition Vector.hh:209
f32 dot(const Vector3f &rhs) const
The dot product between two vectors.
Definition Vector.hh:182
f32 length() const
The square root of the vector's dot product.
Definition Vector.hh:187
f32 squaredLength() const
The dot product between the vector and itself.
Definition Vector.hh:177
Vector3f proj(const Vector3f &rhs) const
The projection of this vector onto rhs.
Definition Vector.hh:193
f32 ps_squareMag() const
Differs from ps_dot due to variation in which operands are fused.
Definition Vector.cc:35
void read(Stream &stream)
Initializes a Vector3f by reading 12 bytes from the stream.
Definition Vector.cc:115
Vector3f perpInPlane(const EGG::Vector3f &rhs, bool normalise) const
Calculates the orthogonal vector, based on the plane defined by this vector and rhs.
Definition Vector.cc:96
EGG::Vector3f multInv(f32 val) const
Multiplies a vector by the inverse of val.
Definition Vector.hh:221
Vector3f rej(const Vector3f &rhs) const
The rejection of this vector onto rhs.
Definition Vector.hh:199
Vector3f maximize(const Vector3f &rhs) const
Returns a vector whose elements are the max of the elements of both vectors.
Definition Vector.cc:65
f32 sqDistance(const Vector3f &rhs) const
The square of the distance between two vectors.
Definition Vector.hh:214
f32 ps_sqDistance(const Vector3f &rhs) const
Paired-singles impl. of sqDistance.
Definition Vector.cc:89
f32 ps_dot() const
Paired-singles dot product implementation.
Definition Vector.cc:22
Vector3f minimize(const Vector3f &rhs) const
Returns a vector whose elements are the min of the elements of both vectors.
Definition Vector.cc:77