A reimplementation of Mario Kart Wii's physics engine in C++
Loading...
Searching...
No Matches
Quat.hh
1#pragma once
2
3#include "egg/math/Math.hh"
4#include "egg/math/Vector.hh"
5
6namespace EGG {
7
12struct Quatf {
13#ifdef BUILD_DEBUG
14 constexpr Quatf() : w(std::numeric_limits<f32>::signaling_NaN()) {}
15#else
16 constexpr Quatf() = default;
17#endif
18 constexpr Quatf(f32 w_, const Vector3f &v_) : v(v_), w(w_) {}
19 constexpr Quatf(f32 w_, f32 x_, f32 y_, f32 z_) : v(x_, y_, z_), w(w_) {}
20 ~Quatf() = default;
21
22 Quatf &operator=(const Quatf &q) {
23 w = q.w;
24 v = q.v;
25
26 return *this;
27 }
28
29 [[nodiscard]] Quatf operator+(const Quatf &rhs) const {
30 return Quatf(w + rhs.w, v + rhs.v);
31 }
32
33 Quatf &operator+=(const Quatf &rhs) {
34 return *this = *this + rhs;
35 }
36
37 [[nodiscard]] Quatf operator*(const Vector3f &vec) const {
38 Vector3f cross = v.cross(vec);
39 Vector3f scale = vec * w;
40 return Quatf(-v.dot(vec), cross + scale);
41 }
42
43 [[nodiscard]] Quatf operator*(f32 scalar) const {
44 return Quatf(w * scalar, v * scalar);
45 }
46
47 Quatf &operator*=(f32 scalar) {
48 return *this = *this * scalar;
49 }
50
53 [[nodiscard]] Quatf operator*(const Quatf &rhs) const {
54 f32 _w = w * rhs.w - v.x * rhs.v.x - v.y * rhs.v.y - v.z * rhs.v.z;
55 f32 _x = v.y * rhs.v.z + (v.x * rhs.w + w * rhs.v.x) - v.z * rhs.v.y;
56 f32 _y = v.z * rhs.v.x + (v.y * rhs.w + w * rhs.v.y) - v.x * rhs.v.z;
57 f32 _z = v.x * rhs.v.y + (v.z * rhs.w + w * rhs.v.z) - v.y * rhs.v.x;
58
59 return Quatf(_w, _x, _y, _z);
60 }
61
62 Quatf &operator*=(const Quatf &q) {
63 return *this = *this * q;
64 }
65
66 bool operator==(const Quatf &rhs) const {
67 return w == rhs.w && v == rhs.v;
68 }
69
70 bool operator!=(const Quatf &rhs) const {
71 return !(*this == rhs);
72 }
73
75 explicit operator std::string() const {
76 return std::format("[0x{:08X}, 0x{:08X}, 0x{:08X}, 0x{:08X}] | [{}, {}, {}, {}]", f2u(v.x),
77 f2u(v.y), f2u(v.z), f2u(w), v.x, v.y, v.z, w);
78 }
79
80 void setRPY(const Vector3f &rpy);
81 void normalise();
82 void makeVectorRotation(const Vector3f &from, const Vector3f &to);
83
85 Quatf conjugate() const {
86 return Quatf(w, -v);
87 }
88
89 Vector3f rotateVector(const Vector3f &vec) const;
90 Vector3f rotateVectorInv(const Vector3f &vec) const;
91 Quatf slerpTo(const Quatf &q2, f32 t) const;
92
95 f32 squaredNorm() const {
96 return w * w + v.squaredLength();
97 }
98
99 f32 norm() const {
100 return Mathf::sqrt(squaredNorm());
101 }
102
105 f32 dot(const Quatf &q) const {
106 return w * q.w + v.dot(q.v);
107 }
108
109 void setAxisRotation(f32 angle, const Vector3f &axis);
110 Quatf multSwap(const Vector3f &v) const;
111 Quatf multSwap(const Quatf &q) const;
112
113 void read(Stream &stream);
114
115 Vector3f v;
116 f32 w;
117
118 static const Quatf ident;
119};
120
121} // namespace EGG
A stream of data, abstracted to allow for continuous seeking.
Definition Stream.hh:10
EGG core library.
Definition Archive.cc:6
A quaternion, used to represent 3D rotation.
Definition Quat.hh:12
void normalise()
Scales the quaternion to a unit length.
Definition Quat.cc:23
Quatf operator*(const Quatf &rhs) const
Definition Quat.hh:53
Vector3f rotateVector(const Vector3f &vec) const
Rotates a vector based on the quat.
Definition Quat.cc:50
f32 squaredNorm() const
Computes .
Definition Quat.hh:95
Quatf slerpTo(const Quatf &q2, f32 t) const
Performs spherical linear interpolation.
Definition Quat.cc:79
void setAxisRotation(f32 angle, const Vector3f &axis)
Set the quat given angle and axis.
Definition Quat.cc:106
f32 dot(const Quatf &q) const
Computes .
Definition Quat.hh:105
Vector3f rotateVectorInv(const Vector3f &vec) const
Rotates a vector on the inverse quat.
Definition Quat.cc:64
void setRPY(const Vector3f &rpy)
Sets roll, pitch, and yaw.
Definition Quat.cc:7
Quatf conjugate() const
Computes .
Definition Quat.hh:85
void makeVectorRotation(const Vector3f &from, const Vector3f &to)
Captures rotation between two vectors.
Definition Quat.cc:35
A 3D float vector.
Definition Vector.hh:83
f32 dot(const Vector3f &rhs) const
The dot product between two vectors.
Definition Vector.hh:182
f32 squaredLength() const
The dot product between the vector and itself.
Definition Vector.hh:177