3#include "egg/math/Math.hh"
12 f32 yy = 2.0f * q.v.y * q.v.y;
13 f32 zz = 2.0f * q.v.z * q.v.z;
14 f32 xx = 2.0f * q.v.x * q.v.x;
15 f32 xy = 2.0f * q.v.x * q.v.y;
16 f32 xz = 2.0f * q.v.x * q.v.z;
17 f32 yz = 2.0f * q.v.y * q.v.z;
18 f32 wz = 2.0f * q.w * q.v.z;
19 f32 wx = 2.0f * q.w * q.v.x;
20 f32 wy = 2.0f * q.w * q.v.y;
22 mtx[0][0] = 1.0f - yy - zz;
27 mtx[1][1] = 1.0f - xx - zz;
32 mtx[2][2] = 1.0f - xx - yy;
42 f32 yy = 2.0f * q.v.y * q.v.y;
43 f32 zz = 2.0f * q.v.z * q.v.z;
44 f32 xx = 2.0f * q.v.x * q.v.x;
45 f32 xy = 2.0f * q.v.x * q.v.y;
46 f32 xz = 2.0f * q.v.x * q.v.z;
47 f32 yz = 2.0f * q.v.y * q.v.z;
48 f32 wz = 2.0f * q.w * q.v.z;
49 f32 wx = 2.0f * q.w * q.v.x;
50 f32 wy = 2.0f * q.w * q.v.y;
52 mtx[0][0] = 1.0f - yy - zz;
57 mtx[1][1] = 1.0f - xx - zz;
62 mtx[2][2] = 1.0f - xx - yy;
75 const f32 c0_c2 = c.x * c.z;
76 const f32 s0_s1 = s.x * s.y;
77 const f32 c0_s2 = c.x * s.z;
79 mtx[0][0] = (c.y * c.z);
80 mtx[1][0] = (c.y * s.z);
83 mtx[0][1] = (s0_s1 * c.z) - c0_s2;
84 mtx[1][1] = (s0_s1 * s.z) + c0_c2;
85 mtx[2][1] = (s.x * c.y);
87 mtx[0][2] = (c0_c2 * s.y) + (s.x * s.z);
88 mtx[1][2] = (c0_s2 * s.y) - (s.x * c.z);
89 mtx[2][2] = (c.x * c.y);
102 const f32 c0_c2 = c.x * c.z;
103 const f32 s0_s1 = s.x * s.y;
104 const f32 c0_s2 = c.x * s.z;
106 mtx[0][0] = (c.y * c.z);
107 mtx[1][0] = (c.y * s.z);
110 mtx[0][1] = (s0_s1 * c.z) - c0_s2;
111 mtx[1][1] = (s0_s1 * s.z) + c0_c2;
112 mtx[2][1] = (s.x * c.y);
114 mtx[0][2] = (c0_c2 * s.y) + (s.x * s.z);
115 mtx[1][2] = (c0_s2 * s.y) - (s.x * c.z);
116 mtx[2][2] = (c.x * c.y);
124void Matrix34f::makeS(
const Vector3f &s) {
159 mtx[rowIdx][0] *= row.x;
160 mtx[rowIdx][1] *= row.y;
161 mtx[rowIdx][2] *= row.z;
166 mtx[0][col] =
base.x;
167 mtx[1][col] =
base.y;
168 mtx[2][col] =
base.z;
176 mat[0, 0] =
fma(rhs[2, 0], mtx[0][2],
fma(rhs[1, 0], mtx[0][1], rhs[0, 0] * mtx[0][0]));
177 mat[0, 1] =
fma(rhs[2, 1], mtx[0][2],
fma(rhs[1, 1], mtx[0][1], rhs[0, 1] * mtx[0][0]));
178 mat[1, 0] =
fma(rhs[2, 0], mtx[1][2],
fma(rhs[1, 0], mtx[1][1], rhs[0, 0] * mtx[1][0]));
179 mat[1, 1] =
fma(rhs[2, 1], mtx[1][2],
fma(rhs[1, 1], mtx[1][1], rhs[0, 1] * mtx[1][0]));
180 mat[0, 2] =
fma(rhs[2, 2], mtx[0][2],
fma(rhs[1, 2], mtx[0][1], rhs[0, 2] * mtx[0][0]));
181 mat[0, 3] =
fma(1.0f, mtx[0][3],
182 fma(rhs[2, 3], mtx[0][2],
fma(rhs[1, 3], mtx[0][1], rhs[0, 3] * mtx[0][0])));
183 mat[1, 2] =
fma(rhs[2, 2], mtx[1][2],
fma(rhs[1, 2], mtx[1][1], rhs[0, 2] * mtx[1][0]));
184 mat[1, 3] =
fma(1.0f, mtx[1][3],
185 fma(rhs[2, 3], mtx[1][2],
fma(rhs[1, 3], mtx[1][1], rhs[0, 3] * mtx[1][0])));
186 mat[2, 0] =
fma(rhs[2, 0], mtx[2][2],
fma(rhs[1, 0], mtx[2][1], rhs[0, 0] * mtx[2][0]));
187 mat[2, 1] =
fma(rhs[2, 1], mtx[2][2],
fma(rhs[1, 1], mtx[2][1], rhs[0, 1] * mtx[2][0]));
188 mat[2, 2] =
fma(rhs[2, 2], mtx[2][2],
fma(rhs[1, 2], mtx[2][1], rhs[0, 2] * mtx[2][0]));
189 mat[2, 3] =
fma(1.0f, mtx[2][3],
190 fma(rhs[2, 3], mtx[2][2],
fma(rhs[1, 3], mtx[2][1], rhs[0, 3] * mtx[2][0])));
199 ret.x = mtx[0][0] * vec.x + mtx[0][3] + mtx[0][1] * vec.y + mtx[0][2] * vec.z;
200 ret.y = mtx[1][0] * vec.x + mtx[1][3] + mtx[1][1] * vec.y + mtx[1][2] * vec.z;
201 ret.z = mtx[2][0] * vec.x + mtx[2][3] + mtx[2][1] * vec.y + mtx[2][2] * vec.z;
211 ret.x =
fma(mtx[0][2], vec.z, mtx[0][0] * vec.x) +
fma(mtx[0][3], 1.0f, mtx[0][1] * vec.y);
212 ret.y =
fma(mtx[1][2], vec.z, mtx[1][0] * vec.x) +
fma(mtx[1][3], 1.0f, mtx[1][1] * vec.y);
213 ret.z =
fma(mtx[2][2], vec.z, mtx[2][0] * vec.x) +
fma(mtx[2][3], 1.0f, mtx[2][1] * vec.y);
222 ret.x = mtx[0][0] * vec.x + mtx[0][1] * vec.y + mtx[0][2] * vec.z;
223 ret.y = mtx[1][0] * vec.x + mtx[1][1] * vec.y + mtx[1][2] * vec.z;
224 ret.z = mtx[2][0] * vec.x + mtx[2][1] * vec.y + mtx[2][2] * vec.z;
234 ret.x =
fma(mtx[0][2], vec.z,
fma(mtx[0][0], vec.x, mtx[0][1] * vec.y));
235 ret.y =
fma(mtx[1][2], vec.z,
fma(mtx[1][0], vec.x, mtx[1][1] * vec.y));
236 ret.z =
fma(mtx[2][2], vec.z,
fma(mtx[2][0], vec.x, mtx[2][1] * vec.y));
246 f32 determinant = ((((mtx[2][1] * (mtx[0][2] * mtx[1][0])) +
247 ((mtx[2][2] * (mtx[0][0] * mtx[1][1])) +
248 (mtx[2][0] * (mtx[0][1] * mtx[1][2])))) -
249 (mtx[0][2] * (mtx[2][0] * mtx[1][1]))) -
250 (mtx[2][2] * (mtx[1][0] * mtx[0][1]))) -
251 (mtx[1][2] * (mtx[0][0] * mtx[2][1]));
253 if (determinant == 0.0f) {
254 out = Matrix34f::ident;
258 f32 invDet = 1.0f / determinant;
260 out[0, 2] = (mtx[0][1] * mtx[1][2] - mtx[1][1] * mtx[0][2]) * invDet;
261 out[1, 2] = -(mtx[0][0] * mtx[1][2] - mtx[0][2] * mtx[1][0]) * invDet;
262 out[2, 1] = -(mtx[0][0] * mtx[2][1] - mtx[2][0] * mtx[0][1]) * invDet;
263 out[2, 2] = (mtx[0][0] * mtx[1][1] - mtx[1][0] * mtx[0][1]) * invDet;
264 out[2, 0] = (mtx[1][0] * mtx[2][1] - mtx[2][0] * mtx[1][1]) * invDet;
265 out[0, 0] = (mtx[1][1] * mtx[2][2] - mtx[2][1] * mtx[1][2]) * invDet;
266 out[0, 1] = -(mtx[0][1] * mtx[2][2] - mtx[2][1] * mtx[0][2]) * invDet;
267 out[1, 0] = -(mtx[1][0] * mtx[2][2] - mtx[2][0] * mtx[1][2]) * invDet;
268 out[1, 1] = (mtx[0][0] * mtx[2][2] - mtx[2][0] * mtx[0][2]) * invDet;
275 f32 fVar14 =
fms(mtx[0][1], mtx[1][2], mtx[1][1] * mtx[0][2]);
276 f32 fVar15 =
fms(mtx[1][1], mtx[2][2], mtx[2][1] * mtx[1][2]);
277 f32 fVar13 =
fms(mtx[2][1], mtx[0][2], mtx[0][1] * mtx[2][2]);
278 f32 determinant =
fma(mtx[2][0], fVar14,
fma(mtx[1][0], fVar13, mtx[0][0] * fVar15));
280 if (determinant == 0.0f) {
284 f32 invDet = 1.0f / determinant;
285 invDet = -
fms(determinant, invDet * invDet, invDet + invDet);
287 out[0, 0] = fVar15 * invDet;
288 out[0, 1] = fVar13 * invDet;
289 out[1, 0] =
fms(mtx[1][2], mtx[2][0], mtx[2][2] * mtx[1][0]) * invDet;
290 out[1, 1] =
fms(mtx[2][2], mtx[0][0], mtx[0][2] * mtx[2][0]) * invDet;
291 out[2, 0] =
fms(mtx[1][0], mtx[2][1], mtx[1][1] * mtx[2][0]) * invDet;
292 out[2, 1] =
fms(mtx[0][1], mtx[2][0], mtx[0][0] * mtx[2][1]) * invDet;
293 out[2, 2] =
fms(mtx[0][0], mtx[1][1], mtx[0][1] * mtx[1][0]) * invDet;
294 out[0, 2] = fVar14 * invDet;
295 out[0, 3] = -
fma(out[0, 2], mtx[2][3],
fma(out[0, 1], mtx[1][3], out[0, 0] * mtx[0][3]));
296 out[1, 2] =
fms(mtx[0][2], mtx[1][0], mtx[1][2] * mtx[0][0]) * invDet;
297 out[1, 3] = -
fma(out[1, 2], mtx[2][3],
fma(out[1, 1], mtx[1][3], out[1, 0] * mtx[0][3]));
298 out[2, 3] = -
fma(out[2, 2], mtx[2][3],
fma(out[2, 1], mtx[1][3], out[2, 0] * mtx[0][3]));
307 ret[0, 1] = mtx[1][0];
308 ret[0, 2] = mtx[2][0];
309 ret[1, 0] = mtx[0][1];
310 ret[1, 2] = mtx[2][1];
311 ret[2, 0] = mtx[0][2];
312 ret[2, 1] = mtx[1][2];
void makeOrthonormalBasis(const Vector3f &v0, const Vector3f &v1)
Sets a 3x3 orthonormal basis for a local coordinate system.
Matrix34f multiplyTo(const Matrix34f &rhs) const
Multiplies two matrices.
void setBase(size_t col, const Vector3f &base)
Sets one column of a matrix.
Vector3f base(size_t col) const
Get a particular column from a matrix.
void makeZero()
Zeroes every element of the matrix.
void setAxisRotation(f32 angle, const Vector3f &axis)
Rotates the matrix about an axis.
void makeQ(const Quatf &q)
Sets rotation matrix from quaternion.
Vector3f multVector33(const Vector3f &vec) const
Multiplies a 3x3 matrix by a vector.
void inverseTo33(Matrix34f &out) const
Inverts the 3x3 portion of the 3x4 matrix.
void makeR(const Vector3f &r)
Sets 3x3 rotation matrix from a vector of Euler angles.
Vector3f multVector(const Vector3f &vec) const
Multiplies a vector by a matrix.
void makeRT(const Vector3f &r, const Vector3f &t)
Sets rotation-translation matrix.
Matrix34f transpose() const
Transposes the 3x3 portion of the matrix.
Vector3f ps_multVector(const Vector3f &vec) const
Paired-singles impl. of multVector.
void makeQT(const Quatf &q, const Vector3f &t)
Sets matrix from rotation and position.
void mulRow33(size_t rowIdx, const Vector3f &row)
Multiplies one row of a 3x3 matrix by a vector.
bool ps_inverse(Matrix34f &out) const
Vector3f ps_multVector33(const Vector3f &vec) const
Paired-singles impl. of multVector33.
static f32 fma(f32 x, f32 y, f32 z)
Fused multiply-add operation.
static f32 fms(f32 x, f32 y, f32 z)
Fused multiply-subtract operation.
A quaternion, used to represent 3D rotation.
void setAxisRotation(f32 angle, const Vector3f &axis)
Set the quat given angle and axis.
f32 normalise()
Normalizes the vector and returns the original length.